Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomolecules ; 12(11)2022 11 11.
Article in English | MEDLINE | ID: covidwho-2109924

ABSTRACT

Gold compounds have a long tradition in medicine and offer many opportunities for new therapeutic applications. Herein, we evaluated the lead compound Auranofin and five related gold(I) complexes as possible inhibitors of SARS-CoV-2 Main Protease (SARS-CoV-2 Mpro), a validated drug target for the COVID-19 disease. The investigational panel of gold compounds included Auranofin; three halido analogues, i.e., Au(PEt3)Cl, Au(PEt3)Br, and Au(PEt3)I; and two gold carbene complexes, i.e., Au(NHC)Cl and [Au(NHC)2]PF6. Notably, all these gold compounds, with the only exception of [Au(NHC)2]PF6, turned out to be potent inhibitors of the catalytic activity of SARS-CoV-2 Mpro: the measured Ki values were in the range 2.1-0.4 µM. The reactions of the various gold compounds with SARS-CoV-2 Mpro were subsequently investigated through electrospray ionization (ESI) mass spectrometry (MS) upon a careful optimization of the experimental conditions; the ESI MS spectra provided clear evidence for the formation of tight metallodrug-protein adducts and for the coordination of well defined gold-containing fragments to the SARS-CoV-2 Mpro, again with the only exception of [Au(NHC)2]PF6, The metal-protein stoichiometry was unambiguously determined for the resulting species. The crystal structures of the metallodrug- Mpro adducts were solved in the case of Au(PEt3)Br and Au(NHC)Cl. These crystal structures show that gold coordination occurs at the level of catalytic Cys 145 in the case of Au(NHC)Cl and at the level of both Cys 145 and Cys 156 for Au(PEt3)Br. Tight coordination of gold atoms to functionally relevant cysteine residues is believed to represent the true molecular basis of strong enzyme inhibition.


Subject(s)
Auranofin , COVID-19 Drug Treatment , Humans , Auranofin/pharmacology , Viral Proteins/chemistry , SARS-CoV-2 , Gold Compounds/pharmacology , Cysteine , Gold/pharmacology
2.
Pharmaceutics ; 14(10)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2043903

ABSTRACT

The higher-order structure (HOS) of protein therapeutics has been confirmed as a critical quality parameter. In this study, we compared 2D 1H-13C ALSOFAST-HMQC NMR spectra with immunochemical ELISA-based analysis to evaluate their sensitivity in assessing the HOS of a potent human monoclonal antibody (mAb) for the treatment of coronavirus disease 2019 (COVID-19). The study confirmed that the methyl region of the 2D 1H-13C NMR spectrum is sensitive to changes in the secondary and tertiary structure of the mAb, more than ELISA immunoassay. Because of its highly detailed level of characterization (i.e., many 1H-13C cross-peaks are used for statistical comparability), the NMR technique also provided a more informative outcome for the product characterization of biopharmaceuticals. This NMR approach represents a powerful tool in assessing the overall higher-order structural integrity of mAb as an alternative to conventional immunoassays.

3.
Biomol NMR Assign ; 15(1): 165-171, 2021 04.
Article in English | MEDLINE | ID: covidwho-1384622

ABSTRACT

SARS-CoV-2 RNA, nsP3c (non-structural Protein3c) spans the sequence of the so-called SARS Unique Domains (SUDs), first observed in SARS-CoV. Although the function of this viral protein is not fully elucidated, it is believed that it is crucial for the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral "components" with the host cell; thus, it is essential for the entire viral life cycle. The first two SUDs, the so-called SUD-N (the N-terminal domain) and SUD-M (domain following SUD-N) domains, exhibit topological and conformational features that resemble the nsP3b macro (or "X") domain. Indeed, they are all folded in a three-layer α/ß/α sandwich structure, as revealed through crystallographic structural investigation of SARS-CoV SUDs, and they have been attributed to different substrate selectivity as they selectively bind to oligonucleotides. On the other hand, the C-terminal SUD (SUD-C) exhibit much lower sequence similarities compared to the SUD-N & SUD-M, as reported in previous crystallographic and NMR studies of SARS-CoV. In the absence of the 3D structures of SARS-CoV-2, we report herein the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-M and SUD-C proteins, and the NMR chemical shift-based prediction of their secondary structure elements. These NMR data will set the base for further understanding at the atomic-level conformational dynamics of these proteins and will allow the effective screening of a large number of small molecules as binders with potential biological impact on their function.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , Carbon Isotopes , Hydrogen , Nitrogen Isotopes , Protein Binding , Protein Domains , Protein Structure, Secondary
4.
Biomol NMR Assign ; 15(1): 85-89, 2021 04.
Article in English | MEDLINE | ID: covidwho-1384621

ABSTRACT

Among the proteins encoded by the SARS-CoV-2 RNA, nsP3 (non-structural Protein3) is the largest multi-domain protein. Its role is multifaceted and important for the viral life cycle. Nonetheless, regarding the specific role of each domain there are many aspects of their function that have to be investigated. SARS Unique Domains (SUDs), constitute the nsP3c region of the nsP3, and were observed for the first time in SARS-CoV. Two of them, namely SUD-N (the first SUD) and the SUD-M (sequential to SUD-N), exhibit structural homology with nsP3b ("X" or macro domain); indeed all of them are folded in a three-layer α/ß/α sandwich. On the contrary, they do not exhibit functional similarities, like ADP-ribose binding properties and ADP-ribose hydrolase activity. There are reports that suggest that these two SUDs may exhibit a binding selectivity towards G-oligonucleotides, a feature which may contribute to the characterization of their role in the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral "components" with the host cell. While the structures of these domains of SARS-CoV-2 have not been determined yet, SUDs interaction with oligonucleotides and/or RNA molecules may provide a platform for drug discovery. Here, we report the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-N protein, and the NMR chemical shift-based prediction of the secondary structure elements. These data may be exploited for its 3D structure determination and the screening of chemical compounds libraries, which may alter SUD-N function.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , Carbon Isotopes , Drug Design , Hydrogen , Nitrogen Isotopes , Oligonucleotides/chemistry , Protein Domains , Protein Structure, Secondary , Virus Replication
5.
Chem Commun (Camb) ; 57(64): 7910-7913, 2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1366836

ABSTRACT

Structural data on the SARS-CoV-2 main protease in complex with a zinc-containing organic inhibitor are already present in the literature and gave hints on the presence of a zinc binding site involving the catalytically relevant cysteine and histidine residues. In this paper, the structural basis of ionic zinc binding to the SARS-CoV-2 main protease has been elucidated by X-ray crystallography. The zinc binding affinity and its ability to inhibit the SARS-CoV-2 main protease have been investigated. These findings provide solid ground for the design of potent and selective metal-conjugated inhibitors of the SARS-CoV-2 main protease.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , SARS-CoV-2/enzymology , Binding Sites , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Protein Conformation , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL